4.1. Toolkit Lite2安装¶
Toolkit-lite2适用于板卡端部署模型,更多依赖和使用信息请查看下
Rockchip_RKNPU_User_Guide_RKNN_SDK
板卡上获取RKNN Toolkit Lite2,可以直接从 官方github 或者从配套例程中获取:
# 从教程配套例程获取安装文件(或者从官方github获取最新版本的)
git clone https://gitee.com/LubanCat/lubancat_ai_manual_code.git
cd lubancat_ai_manual_code/dev_env/rknn_toolkit_lite2/
# 最新版本的请到 https://github.com/airockchip/rknn-toolkit2/tree/master/rknn-toolkit-lite2
# 切换到rknn-toolkit-lite2目录下
# 最新版本也支持pip命令安装
pip3 install rknn-toolkit-lite2
如果获取的是教程配套例程,其目录结构如下:
.
├── docs
│ ├── change_log.txt
│ ├── Rockchip_User_Guide_RKNN_Toolkit_Lite2_V1.5.0_CN.pdf
│ └── Rockchip_User_Guide_RKNN_Toolkit_Lite2_V1.5.0_EN.pdf
├── examples
│ ├── inference_with_lite
│ │ ├── resnet18_for_rk3562.rknn
│ │ ├── resnet18_for_rk3566_rk3568.rknn
│ │ ├── resnet18_for_rk3588.rknn
│ │ ├── space_shuttle_224.jpg
│ │ └── test.py
│ └── yolov5_inference
│ ├── bus.jpg
│ ├── test.py
│ ├── yolov5s_for_rk3562.rknn
│ ├── yolov5s_for_rk3566_rk3568.rknn
│ └── yolov5s_for_rk3588.rknn
└── packages
├── rknn_toolkit_lite2-1.5.0-cp310-cp310-linux_aarch64.whl
├── rknn_toolkit_lite2-1.5.0-cp37-cp37m-linux_aarch64.whl
├── rknn_toolkit_lite2-1.5.0-cp38-cp38-linux_aarch64.whl
├── rknn_toolkit_lite2-1.5.0-cp39-cp39-linux_aarch64.whl
└── rknn_toolkit_lite2_1.5.0_packages.md5sum
5 directories, 18 file
环境安装(以LubanCat 2,Debian10为例):
#安装python工具,安装相关依赖和软件包等
sudo apt update
sudo apt-get install python3-dev python3-pip gcc
sudo apt install -y python3-opencv python3-numpy python3-setuptools
Toolkit Lite2工具安装:
# 进入到rknn_toolkit_lite2目录下,
cd rknn_toolkit_lite2/
# 根据板卡系统的python版本,选择Debian10 ARM64 with python3.7.3的whl文件安装
# 例如 debian10 python3.7
pip3 install packages/rknn_toolkit_lite2-1.4.0-cp37-cp37m-linux_aarch64.whl
# 例如 debian11 python3.9
pip3 install packages/rknn_toolkit_lite2-1.5.0-cp39-cp39-linux_aarch64.whl
安装成功:
# 以debain11系统,python3.9为例:
cat@lubancat:~/rknn-toolkit2/rknn_toolkit_lite2$ python3
Python 3.9.2 (default, Feb 28 2021, 17:03:44)
[GCC 10.2.1 20210110] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from rknnlite.api import RKNNLite
>>>